alexa Design and Analysis of Spiroid Winglet
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Design and Analysis of Spiroid Winglet

W.GiftonKoil Raj1, T.AmalSeba Thomas2
  1. PG Scholar, Dept of Aeronautical Engineering, Hindustan Institute of Technology and Science, Chennai, India
  2. Assistant Professor, Dept of Aeronautical Engineering, Hindustan Institute of Technology and Science, Chennai, India
Related article at Pubmed, Scholar Google


Wingtip vortices are strongly associated with induced drag for a three-dimensional wing. So it is important to neglect the wingtip vortices in order to reduce the induced drag. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80– 90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a bird’s wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon.In this paper a configuration of different winglets are studied. A model composed of wing of boeing-737 is designed using CATIA and also the spiroid winglet are designed and attached with a boeing 737 wing using CATIA. Then the modelled wing is meshed using ICEM-CFD. The meshed model will be analysed using ANSYS FLUENT. Finally the percentage decrement of wingtip vortices is calculated using the analysis results.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version