alexa Effect of Chopped Carbon Fiber on Electrical and Thermal properties of Carbon Reinforced Epoxy Composites
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Effect of Chopped Carbon Fiber on Electrical and Thermal properties of Carbon Reinforced Epoxy Composites

Chetan Sheth1, B. R. Parekh2, L. M. Manocha3 and Parul Sheth3
  1. Dept. of Electrical Engineering, G. H. Patel college of Engg. & Tech., V.V. Nagar, Gujarat, India.
  2. Dept. of Electrical Engineering, BVM Engg. College, V.V. Nagar, Gujarat, India.
  3. Dept. of Materials science, SPU, V.V. Nagar, Gujarat, India.
Related article at Pubmed, Scholar Google
 

Abstract

This work presents an insight into the effect of conductive filler content on both electrical and thermal properties of a polymer composite system. The electrical conductivity of an insulating polymer can be achieved by dispersing conducting fillers (e.g., metal, graphite powder, carbon black, carbon fiber) in the polymer matrix. The resulting materials are referred to as conducting polymer composites. Electrical and thermal properties of epoxy/chopped carbon fiber composites were experimentally studied in this work. The composites are processed by hand mixing technique. The weight fraction of the chopped carbon fiber (CCF) ranged from 0 wt % (as such epoxy) up to 15 wt % with the epoxy resin. By discharging a high voltage (D.C.) through the composite it was found that the resistivity of the composite decreased. The conduction mechanism of composites was studied by means of exploring the current-time characteristics and frequency dependence of conductivity. The A.C. electrical conductivity (σ (ω) a.c.) for these composites have been measured over the frequency range (102 -106) Hz at room temperature. It is found that A.C. conductivity increased when increased conductive filler concentration and frequency. Epoxy/chopped carbon fiber composites show significant differences from the neat epoxy resin measured in the frequency range. The D.C. conductivity at room temperature, percolation threshold was found when CCF (chopped carbon fiber) is added in the range of 3 and 5 wt%. At 5 wt% of filler loading breakdown phenomena was observed. This effect was attributed to local dielectric breakdown of polymer layer between carbon fibers. The optical microscopy revealed the microstructure at critical filler concentration (fc). The thermal characterization done by Differential Scanning Calorimetry (DSC) for glass transition temperature (Tg) shows unpredictable results.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharm[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords