ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article


Dr. Basharat Salim
Department of Mechanical Engineering College of Engineering King Saud University Riyadh
Related article at Pubmed, Scholar Google


Diffusers are used in many fluid flow systems where a need exists for the flow deceleration or pressure enhancement. A wide angle diffuser has larger diffusion angle and area ratio than the common diffuser. Its main use is to restrict length of the diffusing passage for nearly equivalent pressure recovery enhancement. When the flow enters the diffuser inlet it faces an adverse pressure gradient that results in flow separation which causes degradation in the performance of a diffuser by decreasing the pressure rise capability and increasing the total pressure loss. Its performance depends on a complicated interaction between its flow and performance parameters. The present investigations aim at experimentally investigating the flow behavior within a wide angle diffuser to evaluate its performance. The effect of diffuser angle and area ratio of the diffuser has been investigated by testing two types of diffusers at five Reynolds numbers. Four diffusers of diffuser angle 50, 70,100 and120 were used to find the effect of diffuser angle, where as another four diffusers with area ratio 1.56, 1.76, 1.97and 2.24 were used to determine effect of area enlargement for a diffuser angle of 70.To achieve this goal an experimental facility was fabricated around a centrifugal fan which fed air diffuser through a settling chamber and a straight duct. The variations have been shown as velocity ratio with the references of the mean velocity at the inlet of the diffuser. The Reynolds numbers at which investigations were carried out were calculated using free upstream velocity which was measured upstream of the diffuser inlet so as to avoid the influence of the diffuser on velocity profile. The results depict that both the pressure recovery and diffuser effectiveness is better in the diffuser with 70 diffuser angle. The better performance is attributed to the lesser values of the inlet blockage and percentage RMS index for this diffuser. The change in the area ratio of the diffuser with diffuser angle of 70 showed that the change in the area ratio of the diffuser affects the performance parameters of the diffuser and the internal aerodynamics of the diffusers. The diffuser with aspect ratio of 1.76 developed higher pressure rise coefficient and diffuser effectiveness


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version