alexa Formation of Smart Sentiment Analysis Technique for Bi
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Formation of Smart Sentiment Analysis Technique for Big Data

Manisha Shinde-Pawar
Assistant Professor, Dept. of Management, IMRDA, SANGLI, Bharati Vidyapeeth Univerisity, Pune, India
Related article at Pubmed, Scholar Google


Many of the top digital e-textbook companies employ big data in the form of analytics to not only measure customers buying habits, but also to provide the organizations with measurable data. Analytics are more important than just clicking on a buy button. Analyzing the voluminous data at an instant of time in memory to take right decisions is great challenge. To avoid such situations the basic need is to study sentiments while taking decisions. Here data analytics can help to analyze such big data. This has given rise a thirst for carrying out the study on sentiment analytics, big data and use of some smart algorithm to discover correct sentiments or opinions from unstructured big data. The approach uses natural language processing techniques of Artificial Neural Network to extract features of interest from textual data retrieved from a micro blogging platform in real-time and, hence, generate appropriate executable code for the Decision Science and get predetermined means of social communication. So by enriching semantic knowledge bases using Fuzzy Logic (for fitness approximation) for Opinion Mining in Big Data Applications with predetermined means, suggested user action decisions can be improved.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version