alexa Hidden Markov Model Based Image De-Noising
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Hidden Markov Model Based Image De-Noising

Mrs.Seema Deoghare1, Aditya Satvekar2, Nitin Bhoye2 and Chintan Shah2
  1. Assistant professor, Dept. of E&TC, Pimpri Chinchwad College of Engineering, Pune, Maharashtra,India
  2. UG Student [E&TC], Dept. of E&TC, Pimpri Chinchwad College of Engineering, Pune, Maharashtra,India
Related article at Pubmed, Scholar Google


In the image processing technology, noise is the major part which degrades the quality of Image. Noise will create an error in the image, So we have to make such a system which reduces the noise or eliminate the noise. In digital image several types of noise are present. For elimination of these noise we requires a filter. For different noise we have to use different filters. But the problem will arises when a image contain lots of noise present (Ex: Salt & pepper noise, Gaussian noise) then we can’t use these filters. So we have to make a universal filter/Algorithm which de-noises the image. In our propose system we are using “M-Universal Hidden Markov Tree” algorithm we propose a new image de-noising algorithm, called M-uHMT. It is simple and effective. Simulation results show that the proposed M-uHMT can achieve the state-of-the-art image de-noising performance at the low computational complexity. The proposed algorithm has two major steps: an optimum estimation of the wavelet coefficients based on the uHMT model and an averaging of the de-noised images. Each step contributes to improvement in de-noising performance.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version