alexa Intelligent Software Effort Estimation through a Multip
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Intelligent Software Effort Estimation through a Multiple Comparisons Algorithm

R.Manimegalai, J.Selvakumar and M.Rajaram
Software Engineering, Sri Ramakrishna Engineering College Coimbatore, India
Related article at Pubmed, Scholar Google
 

Abstract

Software Cost Estimation (SCE) can be related as the process of estimating the most realistic effort necessary to accomplish a software project. The rapidly improved demand of large-scaled and complex software systems leads managers to settle SCE as one of the most vital actions that is closely associated with the success or failure of the whole development procedure. Propose an analytical framework based on a multiple comparisons algorithm in order to rank several cost estimation methods, determining those which have important dissimilarity in accuracy, and clustering them in nonoverlapping groups. To overcome this problem proposed an improved cost effort estimation methods and compared using appropriate statistical procedures. In this paper we develop an intelligent Expert System that supports all type of software development regardless of their type - either using conventional computer languages or component based visual languages. Classification is most common method used for finding the mine rule from the large database. We also extend our work to C5.0 algorithms applied on customer database for classification. The proposed framework is applied in a large-scale setup of comparing 12 prediction models over three datasets.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords