alexa Investigation on behaviour of reinforced geopolymer co
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Investigation on behaviour of reinforced geopolymer concrete slab under repeated low velocity impact loading

Madheswaran C. K. 1, J. K. Dattatreya 1, P S Ambily 1, Karansingh, P.R 2
  1. Scientist, CSIR-Structural Engineering Research Centre, Taramani, Chennai, India
  2. M.Tech Project student, Malnad College of Engineering, Hassan, Karnataka, India
Related article at Pubmed, Scholar Google


Geopolymers are a novel class of materials that are formed by the polymerisation of silicon, aluminum, and oxygen species to form an amorphous 3-D framework structure. Concrete made out of these binder system possess several advantages compared to conventional ordinary Portland cement concretes (OPCCs). Substantial research work has been reported on the impact behaviour of reinforced concrete structural elements whereas similar studies have not been reported on GPCs. This paper describes the experimental and numerical investigation on the behaviour of reinforced GPC slabs under repeated impact loading. The aim is to study the impact behavior of reinforced GPC slabs with and without steel fibers and compare with that of OPCC slabs. The overall dimensions of the GPC slab are 1m x 1m, with 60mm thickness. Finite element modeling of slab was also carried out using ANSYS software. The Solid 65 element and link 8 elements were used to model the concrete slab and Reinforcement respectively. Displacement boundary conditions are applied at the supports. The measured impact load time history is used to excite the structure. Transient dynamic analysis was carried out. The response was obtained in terms of deflection time histories. The peak acceleration of analytical studies showed a pattern similar to that obtained from experimental results. The failure crack pattern of plain and steel fibre reinforced slabs predicted by Finite Element analyses are compared with experimental results. The studies emphasize that by proper design, GPCC can be used in lieu of OPCC for structural components subjected to low velocity impact.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected].com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version