alexa Learning Image Re-Rank: Query-Dependent Image Re-Ranki
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Learning Image Re-Rank: Query-Dependent Image Re-Ranking Using Semantic Signature

A Ramachandran1, M Sai Kumar2, Dr. C. Nalini2
  1. U.G. Student, Department of Computer Engineering, Bharath University, selaiyur, Chennai, India
  2. U.G. Student, Department of Computer Engineering, Bharath University, selaiyur, Chennai, India
Related article at Pubmed, Scholar Google


Image re-ranking, is an effective way to improve the results of web-based image search and has been adopted by current commercial search engines such as Bing and Google. When a query keyword is given, a list of images are first retrieved based on textual information given by the user. By asking the user to select a query image from the pool of images, the remaining images are re-ranked based on their index with the query image. A major challenge is that sometimes semantic meanings may interpret user’s search intention. Many people recently proposed to match images in a semantic space which used attributes or reference classes closely related to the semantic meanings of images as basis. In this paper, we propose a novel image re-ranking framework, in which automatically offline learns different semantic spaces for different query keywords and displays with the image details in the form of augmented images. The images are projected into their related semantic spaces to get semantic signatures with the help of one click feedback from the user. At the online stage, images are re-ranked by comparing their semantic signatures obtained from the semantic space specified by the query keyword given by the user. The proposed query-specific semantic signatures significantly improve both the accuracy and efficiency of image re-ranking. Experimental results show that 25-40 percent relative improvement has been achieved on re-ranking precisions compared with the state-of-the-art methods.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version