alexa Nanocoating for Corrosion Protection of Metal in SO2 En
ISSN: 2320-2459

Research & Reviews: Journal of Pure and Applied Physics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Nanocoating for Corrosion Protection of Metal in SO2 Environment

Rajesh Kumar Singh1*, and Sanjoy Misra2

1Department of Chemistry, Jagdam College, JP University, Chapra 841301, India.

2Department of Chemistry, Ranchi University, Ranchi, India.

*Corresponding Author:
Rajesh Kumar Singh
Department of Chemistry
Jagdam College, JP University
Chapra 841301, India.

Received date: 08/12/2013; Revised date: 10/01/2014; Accepted date: 12/01/2014

 

Abstract

SO2 is a very dangerous corrosive pollutant. This corrosive gas produces dangerous corroding effect with materials. It reacts with moist oxygen to form acids which generates corrosion problems with materials. It changes their physical, chemical and mechanical properties and tarnishes their appearance. Mild steel is a very important engineering metal and it is used for several appliances in day to day life. Mild steel is highly sensitive toward moist SO2. It develops corrosion cell on the surface of mild steel and undergoes with corrosion reaction. Metal exhibits galvanic corrosion, pitting corrosion, crevice corrosion, and stress corrosion. The concentration of SO2 gas is increasing day by day in the atmosphere due to industry, transport, road, housing, infrastructure development works and decomposition of living organisms. Its concentration was measured in summer, rainy and winter seasons in industrial areas of different cities and its corrosive effect studied on mild steel. It is observed that concentration of SO2 gas varies from season to season. Its concentration is more in winter than in summer and rainy. This result shows that mild steel corrodes more in winter seasons with respect of summer and rainy seasons. Nanocoating technique is used to check the corrosion of mild steel in SO2 environment. For this work, AlPO4 is applied as coating materials and DLC (diamond like carbon) as filler. Nanocoating work completed with nozzle sprays and chemical vapour deposition methods. The corrosion rate and corrosion current density of metal were calculated by gravimetric and potentiostatic polarization techniques. Surface coating phenomena and its stability studied with help of Arrhenius equation and Langmuir isotherm and thermodynamical parameters like activation energy, heat of adsorption, free energy, enthalpy and entropy.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords