alexa Reproduction of Clinical Isolated Rifampicin-dependent
E- ISSN: 2320 - 3528
P- ISSN: 2347 - 2286

Research & Reviews: Journal of Microbiology and Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Reproduction of Clinical Isolated Rifampicin-dependent L-form Multidrug-resistant Tuberculosis (MDR-TB)

Jialing Bao1, Yiwei Wang2, Xiyan Zhang2 and Min Zhong1,2*

1Chongqing Infectious Disease Medical Center, Chongqing, PR China.

2Chongqing Pulmonary Hospital, Chongqing, PR China.

*Corresponding Author:
Min Zhong
Chongqing Infectious Disease Medical Center, Chongqing, PR China
Tel: 86-65509851
E-mail: [email protected]

Received date: 10 July 2015; Accepted date: 21 September 2015; Published date: 24 September 2015



The emergence of multi-drug resistant-Mycobacterium tuberculosis (MDR-TB), especially the Rifampicin-dependent (R-) MDR-TB, has become a hot issue. To elucidate the potential mechanism that rifampicin-dependent MDR-TB (latent infection) utilizes for its long-term survival, we studied the morphology and L-form growth pattern of rifampicin-dependent MDR-TB. Rifampicin-dependent MDR-TB was isolated from fresh sputum of patients and showed favorable growth in the Rifampicin-containing conditions. Conversely, when R-MDR-TB was cultured in Rifampicin-depleted medium, bacterial growth ceased and MDR-TB transformed into L-form cells. This transformation process was studied over a span of three weeks by both optical microscope and transmission electron microscopy (TEM). At week one, the R-dependent bacteria cultured under rifampicin-null conditions exhibited acid-fast positive fried egg colonies and mycoplasma cell-like morphology. During week 2, the exhibited morphologies of the R-dependent MDR-TB were: acid-fast positive filamentous, granular sphere, cell membrane sugar-coat (filamentous particles aggregations) and protoplasms with various sizes and shapes. The morphologies of R-MDR-TB at week 3 were: tiny translucent colonies and giant sphere, filaments, protoplasm, fried egg colonies and "mycoplasma (filopodia)". These morphologies are typical and representative characteristics of L-form cells growth. These findings reveal the L-form growth of rifampicin-dependent MDR-TB for the first time, and elucidate the potential mechanism of rifampicin-dependent MDR-TB longterm survival (latent infection). This data will help to provide a foundation for novel early diagnosis and effective treatment of R- MDR-TB.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version