alexa Tampering and Copy-Move Forgery Detection Using Sift F
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Tampering and Copy-Move Forgery Detection Using Sift Feature

N.Anantharaj1
M-TECH (IT) Final Year, Department of IT, Dr.Sivanthi Aditanar College of Engineering, Tiruchendur, Tamilnadu, India1
Related article at Pubmed, Scholar Google
 

Abstract

As society has become increasingly depend upon digital images to communicate visual information. Image would provide better impact in convincing someone of something rather than pure description by word. Nowadays one of the principal means for communication is digital visual media. Digital image widely used in various field like medical imaging, journalism, scientific manipulation and digital forensics. Digital image forgery creates more problems on real world. In most digital image communication the main problem is its authenticity. Digital image forensics is a brand new research field which aims at finding the authenticity of images by recovering information. There are several different tampering attacks but, surely, one of the most common and immediate one is copy-move. COPY-MOVE forged detection identified by the visual local feature of images. SIFT method are find the local feature and cluster the related close points, and Geometric transformation are used to identified the similarity and dissimilarity of the images. Then identified the Tampering on images. This Tampering detection is used to identify image Authentic or not.

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords