alexa VLSI Implementation of WiMAX Channel without Using Flo
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

VLSI Implementation of WiMAX Channel without Using Floor Function

To read the full article Peer-reviewed Article PDF image


The Worldwide Interoperability for Microwave Access (WiMAX) is currently one of the hottest technologies in wireless. The Institute of Electrical and Electronics Engineers (IEEE) 802 committee, which sets networking standards such as Ethernet (802.3) and WiFi (802.11), has published a set of standards that define WiMAX. IEEE 802.16-2004. These operate in the 2.5GHz, 3.5GHz and 5.8 GHz frequency bands. WiMAX, is based on an RF technology called Orthogonal Frequency Division Multiplexing (OFDM), which is a very effective means of transferring data when carriers of width of 5MHz or greater can be used. WiMAX is a standard-based wireless technology that provides high throughput broadband connections over long distance. WiMAX can be used for a number of applications, including ―last mile‖ broadband connections, hotspots and high-speed connectivity for business customers. This work proposes an algorithm on address generation circuitry of Deinterleaver using QPSK and 16 QAM modulations for WiMAX transceiver. The floor function associated with the implementation of FPGA is very difficult in IEEE 802.16e standard. The requirement of floor function can be eliminated by using a simple mathematical algorithm. The main aim of the work is to concentrate on performance improvement by reducing interconnection delay, lesser power consumption, and efficient resource utilization by comparing with prevailing technique. This work focuses on removing the complexities and excess hardware involvement in the implementation of the permutations involved in Deinterleaver designs as defined by IEEE 802.16.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version