alexa Reperfusion|OMICS International|Journal Of Neurology And Neurophysiology

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.


Despite considerable research that has contributed to a better understanding of the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed. The only effective treatment for ischemic stroke is rapid recanalization of an occluded vessel by dissolving the clot with tissue plasminogen activator (tPA). However, stroke adversely affects vascular function as well that can cause secondary brain injury and limit treatment that depends on a patent vasculature. In middle cerebral arteries (MCA), ischemia/reperfusion (I/R) causes loss of myogenic tone, vascular paralysis, and endothelial dysfunction that can lead to loss of autoregulation. In contrast, brain parenchymal arterioles retain considerable tone during I/R that likely contributes to expansion of the infarct into the penumbra. Microvascular dysregulation also occurs during ischemic stroke that causes edema and hemorrhage, exacerbating the primary insult. Ischemic injury of vasculature is progressive with longer duration of I/R. Early postischemic reperfusion has beneficial effects on stroke outcome but can impair vascular function and exacerbate ischemic injury after longer durations of I/R. This review focuses on current knowledge on the effects of I/R on the structure and function of different vascular segments in the brain and highlight some of the more promising targets for vascular protection.
  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Last date updated on June, 2014