alexa Abstract | A Comparative Study of Issues in Big Data Clustering Algorithm with Constraint Based Genetic Algorithm for Associative Clustering
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Clustering can be defined as the process of partitioning a set of patterns into disjoint and homogeneous meaningful groups, called clusters. The growing need for distributed clustering algorithms is attributed to the huge size of databases that is common nowadays. The task of extracting knowledge from large databases, in the form of clustering rules, has attracted considerable attention. Distributed clustering algorithms embrace this trend of merging computations with communication and explore all the facets of the distributed computing environments. Ensemble learning is the process by which multiple models, such as classifiers or experts, are strategically generated and combined to solve a particular computational intelligence problem. An important feature of the proposed technique is that it is able to automatically find the optimal number of clusters (i.e., the number of clusters does not have to be known in advance) even for very high dimensional data sets, where tracking of the number of clusters may be highly impossible. The proposed Optimal Associative Clustering algorithm using genetic algorithm and bayes factor for precision is able to outperform two other state-of-the-art clustering algorithms in a statistically meaningful way over a majority of the benchmark data sets. The result of the proposed optimal associative clustering algorithm is compared with one existing algorithm on two multi dimensional datasets. Experimental result demonstrates that the proposed method is able to achieve a better clustering solution when compared with existing algorithms.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): B.Kranthi Kiran, Dr.A Vinaya Babu


Distributed Clustering, Ensemble Learning, Associative clustering, genetic algorithm, multidimensional data, bays factor, contingency table., Genetic Epilepsies

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version