alexa Abstract | A Novel Approach for Breast Cancer Detection using Data Mining Techniques
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Breast cancer is one of the leading cancers for women when compared to all other cancers. It is the second most common cause of cancer death in women. Breast cancer risk in India revealed that 1 in 28 women develop breast cancer during her lifetime. This is higher in urban areas being 1 in 22 in a lifetime compared to rural areas where this risk is relatively much lower being 1 in 60 women developing breast cancer in their lifetime. In India the average age of the high risk group is 43-46 years unlike in the west where women aged 53-57 years are more prone to breast cancer. The aim of this paper is to investigate the performance of different classification techniques. The data breast cancer data with a total 683 rows and 10 columns will be used to test, by using classification accuracy. We analyse the breast Cancer data available from the Wisconsin dataset from UCI machine learning with the aim of developing accurate prediction models for breast cancer using data mining techniques. In this experiment, we compare three classification techniques in Weka software and comparison results show that Sequential Minimal Optimization (SMO) has higher prediction accuracy i.e. 96.2% than IBK and BF Tree methods.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Vikas Chaurasia, Saurabh Pal

Keywords

Breast cancer, Classification techniques, Sequential Minimal Optimization (SMO), IBK, BF Tree., Breast Cancer Clinical Trials,Breast Cancer Immunotherapy,Cancer Signaling Array,Breast Cancer Diagnosis

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords