alexa Abstract | A Review of Emerging Way to Enhance the Durability and Strength of Concrete Structures: Microbial Concrete
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article Open Access

Abstract

Concrete is an absolutely essential component of construction materials used in infrastructure and most buildings. Despite its versatility in construction, it is known to have several limitations. It is weak in tension, has limited ductility and little resistance to cracking. Based on the continuous research carried out around the globe, various modifications have been made from time to time to overcome the deficiencies of cement concrete. However, concrete is sometimes exposed to substances that can attack it and cause deterioration. The corrosion of the concrete is caused by the interaction between biological and chemical processes. When the corrosion is sufficiently occurred, it can lead to structural failures with potentially serious long term operational consequences. Due to microbial activities of the bacteria, microbiologically induced calcite precipitation (MICP), a highly impermeable calcite layer is formed which contributes to increase the performance of concrete structure and also has excellent resistance to corrosion. Recent research has shown that specific species of bacteria can be useful to enhance the durability and strength of concrete structures. This microbial concrete presents a potentially enormous lengthening in service-life of infrastructure, substantially reduces the maintenance costs and also considerably increases the safety of structures. This paper outlines the basic mechanism involved in microbial concrete on which studies were carried out to investigate the causes involved in enhancing the strength and durability of concrete.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Mohini P. Samudre , M. N. Mangulkar , S. D. Saptarshi

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords