alexa Abstract | A Secure Framework for Protection of Social Networks from Information Stealing Attacks
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Social networks are online applications that allow their users to connect by means of various link types. Since these sites gather extensive personal information, there is a promising chance for leakage of personal information and inference attacks. To prevent the social networks from such attacks, a secure framework is proposed here. As first step, the social network is modeled as a connected graph where nodes and edges represent users of network and relationships among them respectively. Then three kinds of learning methods are applied for modeling the inference attacks. The sensitive attributes of each person‟s record is gathered by applying Naive Bayes Classification and each sensitive attribute is classified into a class set. This is known as local classification scheme. In relational classification scheme, relationship between nodes that is persons are examined and link information is inferred. Collective inference scheme attempts to use both the local and relational classifiers in a precise manner to attempt to increase the classification accuracy of nodes in the network. After modeling the network attacks, the sensitive attributes and friendship links are either removed or modified. Thus the social network is sanitized and removing details and links reduce the classification accuracy of classifiers. Thus the proposed approach effectively maintains confidentiality of the data set even after its release so that the attackers have no chance to infer sensitive information of users.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Dr. M.BalaGanesh Mrs.V.Sathya S.Vinoth Kumar

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords