alexa Abstract | An Efficient Iterative Framework for Semi- Supervised Clustering Based Batch Sequential Active Learning Approach
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Semi-supervised is the machine learning field. In the previous work, selection of pairwise constraints for semi-supervised clustering is resolved using active learning method in an iterative manner. Semi-supervised clustering derived from the pairwise constraints. The pairwise constraint depends on the two kinds of constraints such as must-link and cannot-link.In this system, enhanced iterative framework with naive batch sequential active learning approach is applied to improve the clustering performance. The iterative framework requires repeated reclustering of the data with an incrementally growing constraint set. To address incrementally growing constraint set, a batch approach is applied which selects a set of points based on query in each iterative. In the iterative algorithm, k instances select the best matches in the distribution, leading to an optimization problem that term bounded coordinated matching. Leveraging the availability of highly-effective sequential active learning method will improve performance in terms of label efficiency and accuracy with less number of iterations.

To read the full article Peer-reviewed Article PDF image

Author(s): S.Savitha, M. Sakthi Meena

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version