alexa Abstract | Approach for Rule Pruning in Association Rule Mining for Removing Redundancy
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


In Data Mining Association rule mining is an important component. It is used for prediction or decision making. Numbers of method or algorithm exist for generating association rules. These Methods generates a huge number of association rules. Some are redundant rules. Many algorithms have been proposed with the objective of solving the obstacles presented in the generation of association rules. In this paper we have given the approach for removing redundancy based on frequent closed itemset mining (FCI), and using lift as the interesting measure for gating the interesting rule and forming the non-redundant rule set based on completeness and tightness properties of rule set..

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Ashwini Batbarai, Devishree Naidu

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version