alexa Abstract | Area Efficient 16 Point Radix 4 Complex Fast Fourier Transform Algorithm for Efficient FPGA Implementation Using NEDA with Modified CSLA
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Fast Fourier Transforms (FFT), Discrete Cosine Transforms (DCT) are major blocks in communication systems.FFT is used to compute DFT with reduced number of arithmetic units. The major applications of FFT include signal analysis, image filtering, sound filtering, data compression, partial differential equations etc. The proposed design reports the architecture of 16 point complex FFT core using NEw Distributed Arithmetic (NEDA) algorithm. In order to implement FFT, radix-4 Decimation-In-Time algorithm is used. NEw Distributed Arithmetic is used for complex multiplications. It is one of the techniques used to implement many digital signal processing systems that require multiply and accumulate units. The advantage of the NEDA is that, it is a multiplier-less and ROM- less method and the entire section can be implemented using adders and shifters only, thus minimising the hardware requirement compared to other architectures. In the NEDA section, modified carry select adder with Binary-to-Excess one Converter (BEC) logic is used for addition. The design is simulated by using ModelSim SE(6.2b) and synthesised by Xilinx ISE project navigator(13.2).The synthesis results are taken for different Virtex FPGAs (Virtex 4,Virtex 5,Virtex 6).These results show that the computation for calculating the 16 point FFT is efficient in terms of area and power using the proposed method.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Sangeetha Vijayan


Fast Fourier Transform (FFT), FPGA, New Distributed Arithmetic (NEDA), radix-4,modified CSLA, Fourier Transform Mass Spectrometry

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version