alexa Abstract | Cellulosic Microfibril and Its Embedding Matrix within Plant Cell Wall
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Cellulose is the homopolymer of (1→4)-β-D-glucopyranose. Glucan chains are aggregated to form microfibrils with cross dimensions ranged from 2 to 20 nm. The variation in each of microfibrilluar dimension, hydrogen-bonding network and molecular orientation depends on their parent nature. Cellulosic microfibrils isolated from bacteria and certain algae (10–25 nm in diameter) were found to be thicker than those extracted from the primary cell walls in higher plants ( 3–10 nm in diameter).Three biopolymers, namely hemicellulose, lignin and/or pectin contribute to the embedding matrix enveloping the cellulosic microfibrils.The secondary cell wall was found to be differentiated into three consecutive layers (S1, S2, S3). Within each layer, cellulose microfibrils are found parallel and of high order with a different microfibrilluar angle. The bundling process of cellulose microfibrils in both primary and secondary cell walls may involve the aggregation of the closely arranged cellulosic microfibrils. Some models for the microfibril construction have been proposed. Along the longitudinal microfibril’s axe, crystalline regions are alternated with amorphous ones. The most important methods of estimating the crystallinity of cellulose microfibrils such as Xray diffraction (XRD), 13C solid-state NMR spectroscopy (13C-NMR), small-angle neutron scattering (SANS) and sum frequency generation (SFG) spectroscopy were concluded.

To read the full article Peer-reviewed Article PDF image

Author(s): Sherif S. Z. Hindi, Refaat A. Abohassan


Biopolymers, Microfibri, Hydrogen-bonding, Crystallinity of cellulose., Fluid Dynamics

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version