alexa Abstract | CFD Analysis of Supersonic Exhaust in a Scramjet Engine
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


When pressures and temperatures become so high in supersonic flight that it is no longer efficient to slow the oncoming flow to subsonic speeds for combustion, a scramjet (supersonic combustion ramjet) is used in place of a ramjet. This paper is aimed at modeling the supersonic flow inside Scramjet engine using the Computational Fluid Dynamics ANSYS Fluent. The purpose of this test is to validate FLUENT's ability to predict reflecting shock waves and their effect on wall pressure distribution and heat transfer. Supersonic flow from a nozzle that represents the exhaust nozzle of a supersonic combustion ramjet (SCRAMJET) is modeled. Jet from the nozzle is issued into a domain which is bounded on one side by an afterbody wall which is parallel to the centerline of the nozzle. Shocks propagating from the nozzle exit reflect from the afterbody. Measured values of the distribution of wall pressure and heat transfer rate along the afterbody are used to validate the CFD simulation. In this study, k-ε model has been used to examine supersonic flow in a model scramjet exhaust. The configuration used is similar to the DLR (German Aerospace Center) scramjet model and it is consists of a one-sided divergent channel with wedge-shaped and without wedge shaped. For the purpose of validation, the k-ε results are compared with experimental data for temperature at the bottom wall. In addition, qualitative comparisons are also made between predicted and measured shadowgraph images. The k-ε computations are capable of predicting flow simulations well and good.

To read the full article Peer-reviewed Article PDF image

Author(s): Ramesha D.K., Rudra Murthy 3Hemanth Kumar.P


Mach number, SCRAMJET, ANSYS, FLUENT, afterbody, Applied Electronics,Applied Sciences,Biomedical Engineering,Botany,Fluid Dynamics.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version