ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Digital images are often corrupted by impulse noise which has two models namely, random valued impulse noise and salt & pepper noise. In this paper performance of two modified median filters viz., Switching Median Filter (SMF) using Boundary Discriminative Noise Detection (BDND) algorithm and Modified Decision Based Unsymmetric Trimmed Median (MDBUTM) filter for the removal of impulse noise was tested & compared using Peak Signal to Noise Ratio (PSNR), Image Enhancement Factor (IEF), number of Correctly Detected Corrupted (CDC) pixels, Miss Detected (MD) pixels, False Alarm (FA) pixels and execution time. These two filters basically identify corrupted pixels from noisy image and then filter only those corrupted pixels. In SMF, BDND algorithm is used to determine two boundaries to identify corrupted pixels, and then modified adaptive filter is used to replace corrupted pixels. MDBUTM filter deems pixels having values ‘0’ or ‘255’ as corrupted and replaces these pixels either by trimmed median or by mean of neighborhood pixels. The performance of filters is tested on gray scale images corrupted with variable percentage of salt & pepper noise and random valued impulse noise. Qualitative and quantitative result analysis show that for salt and pepper noise performance of MDBUTM filter and SMF using BDND was found to be nearly equal at all noise densities. For random valued impulse noise, performance of SMF using BDND was found to be better than that of MDBUTM filter. However SMF using BDND requires more time for execution due BDND algorithm.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Sakhare V. C., V. Jayashree


Impulse noise, MF, SMF, MDBUTM, BDND, IEF., Aerospace Engineering,Bio medical Engineering,Chromatography,Computer Science.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version