alexa Abstract | Controllable Bridgeless CUK Rectifiers for PFC Applications
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article Open Access


Power supplies with active power factor correction (PFC) techniques are becoming necessary to meet harmonic regulations and standards. Conventional PFC scheme has lower efficiency due to significant losses in the diode bridge. In an effort to maximize the power supply efficiency, considerable research efforts have been directed toward designing bridgeless PFC circuits, where the number of semiconductors generating losses is reduced by eliminating the full bridge input diode rectifier. A bridgeless PFC Rectifier allows the current to flow through a minimum number of switching devices compared to the conventional PFC rectifier. Accordingly, the converter conduction losses can be significantly reduced and higher efficiency can be obtained, as well as cost savings. Several bridgeless topologies, which are suitable for step-up/step-down applications have been introduced. The CUK converter offers several advantages in PFC applications. Unlike the SEPIC converter, the CUK converter has both continuous input and output currents with a low current ripple. Thus, for applications which require a low current ripple at the input and output ports of the converter, the CUK converter seems to be a potential candidate in the basic converter topologies. Due to the lower conduction and switching losses, the bridgeless CUK topology can further improve the conversion efficiency when compared with the conventional CUK PFC rectifier. To maintain the same efficiency, these circuits can operate with a higher switching frequency. It will reduce the size of the PFC inductor and EMI filter. The power factor value can be achieved up to 0.9136 using this circuit with a power of 166 W. It is proven by using MATLAB simulation.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Nikhil Mohanan, Daisykutty Abraham, Geethu James

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version