alexa Abstract | Effects of Ubiquinol in Reducing the Development of Heart Failure with Preserved Ejection Fraction and Mitochondrial Injury

Research & Reviews: Journal of Nursing and Health Sciences
Open Access

Like us on: https://twitter.com/nursinghealths2
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

There is currently no effective clinical treatment for diastolic heart failure also termed heart failure with preserved ejection fraction (HFpEF) which is associated with reduced myocardial adenosine triphosphate. Ubiquinol in the electron chain is required for adenosine triphosphate synthesis. Thus, the purpose of this pilot study was to examine in a rat model the effects of ubiquinol (reduced form of Coenzyme Q10) in the development of HFpEF. Six Dahl salt-sensitive rats were randomly assigned to either control or experimental groups. Starting at the age of 7 weeks, all rats were fed 8% NaCl diet and water for 12 weeks. The rats in the experimental group were fed ubiquinol (2 mg/100 g) in the water. Blood pressures, heart rate, and echocardiographic data were obtained at baseline and at the end of experiment. Rats in the ubiquinol group had lower increases in blood pressures and left ventricular wall thickness. Heart rate variability was not significantly different although there was a decrease in heart rate and an increase in parasympathetic nervous system output in the ubiquinol group. There was also less cardiac mitochondrial damage in the ubiquinol group compared to the control rats. Though the sample size is small, the supplementation of ubiquinol appears to reduce blood pressure and myocardial mitochondrial injury.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Qiuhua Shen, John B. Hiebert, Amanda R. Thimmesch, Richard L. Clancy, Janet D. Pierce

Keywords

Heart failure, Coenzyme Q10, Ubiquinol, Mitochondrial damage., Heart failure, Coenzyme Q10, Ubiquinol, Mitochondrial damage.

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords