alexa Abstract | Efficient Isolation and Functional Analysis of Spontaneous Streptococcus thermophilus Bacteriophage-Insensitive Mutants
E- ISSN: 2320 - 3528
P- ISSN: 2347 - 2286

Research & Reviews: Journal of Microbiology and Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


The use of bacteriophage-resistant strains that have satisfactory technological properties is essential for preventing phage infections in industrial fermentation processes. Here, we describe an improved method for the isolation of spontaneous Streptococcus thermophilus bacteriophage-insensitive mutants (BIMs). The concentration of large volumes of S. thermophilus secondary cultures, their subculture in skim milk with high titers of bacteriophages, and their inoculation with the fast milk acidifying phenotype over multiple passages were critical to increasing the probability of obtaining mutants, improving isolation efficiency, and maintaining technological performance. We obtained large quantities of BIMs after every round of screening, with isolation efficiency in excess of 85%. We analyzed nine BIMs, and these were all similar to their parent strain S. thermophilus St1 with respect to syneresis, water holding capacity, and apparent viscosity. In comparison to the parent strain, seven of the nine variants possessed equivalent acidifying activities, with the remaining two variants exhibiting excellent acidification performance. One or two new spacers from corresponding phages were found in all nine BIMs, demonstrating that the CRISPR/Cas system was responsible for the phage resistance of S. thermophilus.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Chengjie Ma, Jinzhong Lin, Guangyu Gong, Zhenmin Liu, Zhengjun Chen, Aimin Ma


Streptococcus thermophilus, bacteriophage-insensitive mutant, efficient isolation, technological performance, CRISPR, Bioprocess Engineering, Biotechnology, Biotechnology Research, Cellular biology, Electrophoresis

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version