alexa Graph Clustering and Feature Selection for High Dimensional Data | Abstract
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article Open Access

Abstract

Feature selection techniques are used to select important items in the transactional data values. The features are used for the classification process. Clustering techniques are used for the feature selection process. Graph based clustering techniques are used to group up the transactional data with similarity values. Correlation similarity measures are used to identify the relevant and irrelevant features. Features And Subspace on Transactions (FAST) clustering-based feature selection algorithm is used to cluster the high dimensional data and feature selection process. FAST algorithm is divided into two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature is selected from each cluster to form a subset of features. Features in different clusters are relatively independent. The clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. Minimum-Spanning Tree (MST) clustering method is adopted to ensure the efficiency of FAST. Feature subset selection algorithm is used to identify the features from the clusters. The feature selection process is improved with a set of correlation measures. Dynamic feature intervals can be used to distinguish features. Redundant feature filtering mechanism is used to filter the similar features. Custom threshold is used to improve the cluster accuracy

To read the full article Peer-reviewed Article PDF image

Author(s): K. Jaganath, Mr. P. Sasikumar

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords