alexa Abstract | Lipid Profile Of Thermophlic Cyanobacterium “Mastigocladus Laminosus” At Different Temperatures
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Thin layer chromatography of total lipids of Mastigocladus laminosus and comparison with values of standard indicated the presence of lipid spots, monogalactosyl diglyceride (MGDG), glycolipid (GL) and phosphatidyl diglyceride (PG) common in both high (45oC) and low temperature grown cells (26oC). Total saturated fatty acid content was five times higher in low temperature grown cells (25oC) compared to 45oC. Among important fatty acids detected in cells were caprylic acid (C8:0), nonanoic acid (C9:0), capric acid (C10:0), undecanoic acid (C11:0), lauric acid (C12:0), tridecanoic acid (C13:0), myristic acid(C14:0), pentadecanoic acid (C15:0), palmitic acid (C16:0), heptadecanoic acid (C17:0), stearic acid (C18:0), nondecanoic acid (C19:0), arachidic acid (C20:0), heneicosanoic acids (C21:0), behenic acid (C22:0), trichosanoic acid (C23:0), and lignoceric acid (C24:0). Low molecular weight saturated fatty acids species e.g. caprylic acid (C8:0) and nonanoic acid (C9:0), were totally absent in low temperature grown cells, while large molecular weight saturated fatty acid from carbon chain length C11 to C24. were abundant in low temperature grown cells. Higher amount of saturated fatty acid in cells grown at suboptimum temperature (25oC) indicated that membranes become highly rigid and as a result most of the membrane linked processes such as photosynthetic electron transport remains non-functional or less efficient at 25oC.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): A.C.Mongra


TLC,HPLC,Mastigocladus laminosus,Lipid profile, thermophilic cyanobacteria,extreme environment, Lipid Signaling Pathways

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version