alexa Abstract | NUMERICAL INVESTIGATION OF FLOW TRANSITION FOR NACA-4412 AIRFOIL USING COMPUTATIONAL FLUID DYNAMICS
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Numerical investigation of aerodynamics phenomena in the post stall region using Computational Fluid Dynamics is critical task due to the strong vortex dynamics involved. Literatures cited in this filed indicates that the Turbulence models employed in most of the commercial CFD software’s will assume the boundary layer around the airfoil as fully turbulent and hence the physical phenomena is wrongly addressed and also this approximation will lead to deviation in results from experimentally measured data in the post stall region. Research in this area concluded that the flow transition (boundary layer transition) from laminar to turbulent around the surface of the airfoil needs to be properly implemented in CFD analysis in order to have a reliable prediction in post stall region. This work aims in predicting the flow transition from laminar to turbulent for flow over NACA4412 airfoil in the incompressible flow regime.CFD analysis methodology involves the use of Mentors Shear Stress Transport Turbulence model(k-ω model)with transitional flow option.CFD analysis results are compared with wind tunnel test data.CFD analysis is also carried out with Spalart allmaras turbulence model which assumes the boundary layer as fully turbulent.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Ravi.H.C, Madhukeshwara.N, S.Kumarappa

Keywords

CFD, Transition, SST model, Turbulence, Stall I., Aerospace Engineering,Applied Electronics,Applied Sciences,Biochemistry.

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords