alexa Abstract | PM6280 and PM6577: ADME Study of Two Potent and Anti-malarial Amodiaquine Analogs with Improved Metabolic Stability
JOMC

Research & Reviews: Journal of Medicinal & Organic Chemistry
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Amodiaquine (AQ), marketed as a combination with Artesunate and prescribed to millions of patients, is one of the most active anti-malarial 4-aminoquinoline. Its major drawback is its weak metabolic stability. Its metabolism is believed to generate inactive or hepatotoxic derivatives. Recently a new series of amodiaquine analogs, in which the hydroxyl group at the 4’ position was replaced by various amino groups, was designed. Among them, compounds bearing a N-methylpiperazino (PM6280) or a morpholino group (PM6577), provided low nanomolar activities upon a panel of chloroquine-sensitive and chloroquine-resistant strains such as F32 and K1, low cytotoxicity, inhibition of hematin polymerization and in vivo efficiency comparable to AQ.In this work, physicochemical properties and permeability profiles of PM6280 and PM6577were evaluated as well as ADME properties related to oral delivery for a potential preclinical phase. Both compounds were subjected to metabolic studies in order to evaluate whether they avoid the excessive metabolism and formation of toxic derivatives observed with AQ. Putative metabolites were identified. The introduction of a heterocyclic amine at the 4’-position together with the replacement of the diethylamino side chain with a pyrrolidino group greatly improved the metabolic stability of this family of compounds.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Guillaume Hochart, Emilia Paunescu, Emmanuelle Boll, Patricia Melnyk

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords