alexa Abstract | Quantum Information Processing Model Explains Early and Recent Genome Repair Mechanisms
ISSN: 2320-2459

Research & Reviews: Journal of Pure and Applied Physics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Molecular clocks exhibit time-dependent substitutions, ts, and deletions, td, as consequences of enzymatic processing of quantum informational content embodied within entangled proton qubit base pair super positions, G′-C′, *G-*C and *A-*T. These heteroduplex heterozygote point, r+/ rII, lesions are consequences of metastable hydrogen bonding amino (− NH2) genome protons encountering quantum uncertainty limits, Δx Δpx ≥ ћ/2, which generate EPR arrangements, keto-amino ―(entanglement)→ enol− imine, where reduced energy product protons are each shared between two indistinguishable sets of intramolecular electron lone-pairs belonging to enol oxygen and imine nitrogen on opposite strands, and thus, participate in entangled quantum oscillations at ~ 4×1013 s−1 (~ 4800 m s−1) between near symmetric energy wells in decoherence-free subspaces until “measured”, in a genome groove, δt<< 10−13 s, by a “truncated” Grover’s quantum bio-processor. Evidence demonstrates entangled proton qubit superpositions are transparent to “regular” DNA repair, but are detected and processed by an “earlier evolved” RNA repair system that implemented ancestral ribozyme – proton entanglement algorithms to introduce ts and td. These “repairs” of entangled superpositions allowed ancestral RNA genomes to avoid evolutionary extinction by disallowing duplication when ts + td exceeded a threshold limit. Natural selection introduced entanglement state bio-processor algorithms that provided a selective advantage for the duplex RNA genome. When duplex RNA became too “unwieldy”, rudimentary repair systems were introduced, which selected the more “suitable” DNA double helix over duplex RNA. Consequently, accumulated heteroduplex heterozygote superpositions are processed by “earlier evolved” enzyme-proton entanglement algorithms which introduce “new” ts or td, i.e., stochastic mutations.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Grant Cooper W


Enzymatic quantum processing, Quantum entanglement algorithm, Natural selection, Ribozyme–RNA—proton entanglement, Triplet code origin, Evolutionary advantages., Acoustics, Aerospace, Applied physics, Atomic Nuclei, Computational Physics, Fluid Mechanics, Force, Geological Research, Gravity, Industrial Physics, Internal Energy, Molecular Physics, Oscillations, Phenomenology, Pure Physics, Quantum Physics, Radiation, Statistical Physics, Thermal Properties

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version