alexa Abstract | Rooting pattern and equations for estimating biomasses of Hardwickia binata and Colophospermum mopane trees in agroforestry system in Indian desert
ISSN: 2320-0189

Research & Reviews: Journal of Botanical Sciences
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


In addition to conserving soil and water, improving land-use efficiency and increasing economic returns, agroforestry practice is also one of the better options of sequestering atmospheric CO2 and contributing to mitigate climate change effects with the secondary benefits of food security. We studied root growth pattern and biomass allocation in roots, stem, branches and foliage (twig+leaves) of 18-year old Colophospermum mopane J. Kirk ex Benth. and Hardwickia binata Roxb and developed equations for precise carbon accounting, environmental health monitoring and sustainable management of agroforestry systems in dry areas. Roots of both these species mined the area >1.5 times the canopy area. Roots of C. mopane were more confined to top 80 cm soil layer and almost parallel to soil surface and appeared to be more competitive as compared to that in H. binata, where roots were relatively deep penetrating. Biomass allocation to roots and foliage decreased with increase in tree total biomass. Such decrease was at the cost of increased branch biomass in H. binata and both branch and stem biomass in C. mopane. Among the linear and nonlinear equations developed for estimating above ground biomass, root biomass and total biomass using diameter at breast height (DBH) and height as the predictors, DBH alone was sufficient to predict these biomasses. Inclusion of height in the models did not improve the results. Average total dry biomass ranged between 4.49 to 135.85 kg per tree for H. binata and 5.91 to 130.41 kg per tree for C. mopane trees. Biomass accumulation in stem was higher (45.7%) in H. binata than in C. mopane (28.6%) trees. A reverse trend was observed in case of foliage, the contribution of which to the total biomass was 40.2% in C. mopane and 23.5% in H. binata trees. Findings on rooting pattern cautioned in selecting agroforestry tree species, whereas predicting standing biomass more accurately for carbon accounting may be beneficial in promoting tree cover and help mitigate climate change effects.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): G. Singh and Bilas Singh


Allometric equation, arid region, biomass allocation, rooting pattern., Paleobotany, Geo Botany, Plant Pathology

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version