alexa

GET THE APP

Metal-organic framework/CNT based self-standing electrodes for asymmetric supercapacitor
ISSN: 2576-1463

Innovative Energy & Research
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Value Added Abstract   
  • Innov Ener Res

Metal-organic framework/CNT based self-standing electrodes for asymmetric supercapacitor

Elif Vargun1,2, Haojie Fei1, Quoc Bao Le1, Natalia Kazantseva1 and Petr Saha1
1Centre of Polymer Systems, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01, Zlín, Czech Republic
2Department of Chemistry, Mugla Sitki Kocman University, Kotekli,48000, Mugla, Turkey

Keywords: Electrode, Supercapacitor

Abstract

Statement of the Problem: Metal-organic frameworks (MOFs) have been used as electrode materials in energy storage devices due to the high specific surface area and various functionality [1]. Even though MOFs can offer high surface area, they usually exhibit low conductivity. The composite structures of MOFs with graphene and CNTs have been developed to improve the electrochemical storage capacity in batteries and supercapacitors [2,3]. In this work, the sandwich-like Mn-MOF/CNT and Co-MOF/CNT composite electrodes have been developed for asymmetric supercapacitor. Polyaniline coated CNT ([email protected]) and carboxylated CNT (c-CNT) were used for the fabrication of free-standing sandwich-like MOF/CNT composite paper. To achieve optimum porosity, the carbonization of the MOF/CNT composite materials was performed. The effect of carbonization process on energy storage performances of two different MOF/CNT based electrode materials were evaluated.

Methodology & Theoretical Orientation: The solvothermal synthesis of Mn-MOF was done by dissolving MnCl2.4H2O (6 mmol) and 2-hydroxyterephthalic acid (1.2 mmol) in DMF and then it was activated by removing the solvent under vacuum at 100ºC for 12 h. The same procedure was used for the synthesis of Co-MOF material by using CoCl2.6H2O (6 mmol). The sandwich like MOF/CNT based electrodes were fabricated by the formation of continuous layers of both modified CNT ([email protected], c-CNT) and MOF suspensions with vacuum assisted filtration. The characterization of electrode material was performed by XRD, SEM, TEM, Raman and XPS techniques. The supercapacitor performance of the free-standing sandwich-like MOF/CNT composite based electrodes was compared by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. The effect of carbonization of active materials on the improved electrochemical storage capacity was also evaluated. Findings: The purity and well-defined structures of Mn-MOF and Co-MOF were confirmed by XRD analysis and the obtained peaks agree well with the data in the literature.

image

Biography:

Dr. Elif Vargun’s major is polymer chemistry and fabrication of nanomaterials in energy storage technology. She has the experience in controlled living polymerization techniques and has interest in the synthesis of sulfur/carbon composite based cathode materials and flame retardant polymer electrolytes for high energy density Li-S batteries. She is an assistant professor at Department of Chemistry, Faculty of Sciences, Mugla Sitki Kocman University in Turkey (13 articles, 95 citations, h-index 6). Since Sep 2018, she has gotten the postdoctoral researcher position at Centre of Polymer Systems of Tomas Bata University in Czech Republic. She is working on asymmetric supercapacitors at Sino-EU Joint Laboratory of New Energy Materials and Devices.

image

Speaker Publications:

1. Vargun E, Fei H, Wang G, Cheng Q, Vilcakova J, Jurca M, Bergerova E, Kazantseva N, Saha P (2019) Reduced Graphene Oxide-MWCNT Organogel Foam for Lithium-Sulfur Battery Cathode. ECS Trans. 95(1): 81-87.

2. Ayrancı R, Vargün E, Ak M (2017) Conjugated and Fluorescent Polymer Based on Dansyl-Substituted Carbazole: Investigation of Electrochromic and Ion Sensitivity Performance. ECS J. Solid State Sci. Technol. 6(5) :211-216.

22nd International Conference on Advanced Energy Materials and Research; Webinar- July 15-16, 2020.

Abstract Citation:

Elif Vargun, Metal-organic framework/CNT based self-standing electrodes for asymmetric supercapacitor, Advanced Energy Materials 2020, 22nd International Conference on Advanced Energy Materials and Research; Webinar- July 15-16, 2020.

(https://energymaterials.materialsconferences.com/abstract/2020/metal-organic-framework-cnt-based-self-standing-electrodes-for-asymmetric-supercapacitor)

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Article Usage
  • Total views: 478
  • [From(publication date): 0-0 - Jan 20, 2022]
  • Breakdown by view type
  • HTML page views: 202
  • PDF downloads: 276
Top