alexa Design and Fabrication of Biomass Extruder of 50 mm Dia

Innovative Energy & Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Design and Fabrication of Biomass Extruder of 50 mm Diameter Briquette Size

Muhammad SN1*, Muhammad AA1, Abdul N1and Anjum M2

1Department of Structures and Environmental Engineering, University of Agriculture Faisalabad, Pakistan

2Department of Energy Systems Engineering, University of Agriculture Faisalabad, Pakistan

*Corresponding Author:
Muhammad SN
Department of Structures and Environmental Engineering
University of Agriculture Faisalabad, Pakistan
Tel:+92 3217707570
E-mail: [email protected]

Received date: December 27, 2015; Accepted date: January 13, 2016; Published date: January 21, 2016

Citation:Muhammad SN, Muhammad AA, Abdul N, Anjum M (2016) Design and Fabrication of Biomass Extruder of 50 Mm Diameter Briquette Size. Innov Ener Res 5:128. doi: 10.4172/ier.1000128

Copyright: © 2016 Muhammad SN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Agricultural residues are producing in large amount but they are used inefficiently that pollute the environment. Apart from the problems of transportation, storage, and handling, the direct burning of loose biomass in conventional grates is associated with very low thermal efficiency and widespread air pollution. To overcome these problems the biomass materials is compressed as 1000 kg/m3 and can increase its density and durability. In this study a machine was designed to densify grinded biomass materials at optimum level of density to obtain more than 90% durability. The machine was consist on power screw and slotted tapper die. The grinded material of particle size less than 5 mm and moisture contents less than 12% passed through hopper and power screw which was rotating at 300 rpm with a 15 kW electric motor compressed this material through tapper die which was heated externally by electric heaters. The capacity of machine was 200 kg/hr. The payback period of machine was 4 months.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version