alexa The Influence of Al2O3- ZnO-H2O Nanofluid on the Thermodynamic Performance of Photovoltaic- Thermal Hybrid Solar Collector System | OMICS International| Abstract
ISSN: 2576-1463

Innovative Energy & Research
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Innov Ener Res 2018, Vol 7(1): 187
  • DOI: 10.4172/2576-1463.1000187

The Influence of Al2O3- ZnO-H2O Nanofluid on the Thermodynamic Performance of Photovoltaic- Thermal Hybrid Solar Collector System

Abubaker Younis1,2, Mahmoud Onsa2, Yousef Alhorr1 and Esam Elsarrag1*
1Gulf Organization for Research and Development, Qatar Science and Technology Park, , Qatar
2Department of Mechanical Engineering, Faculty of Engineering, University of Khartoum, Sudan
*Corresponding Author : Esam Elsarrag, Gulf Organization for Research and Development, Qatar Science and Technology Park, Qatar, Tel: +974 44049016, Email: [email protected]

Received Date: Feb 09, 2018 / Accepted Date: Feb 19, 2018 / Published Date: Feb 23, 2018

Abstract

A thermodynamic analysis was conducted after testing two working fluids to particularly assess the effect of Nanofluid as heat transfer agent on improving thermal, electrical, and exergetic efficiencies of thermally biased solar photovoltaic/thermal (PV/T) hybrid collector system under State of Qatar climate, using experimentally and computationally obtained data. The investigated two fluids were water, and Al2O3-ZnO-H2O Nanofluid mixed with Ethylene Glycol as surfactant. Mass fractions of Nanoparticles were 0.05 wt.% Al2O3 with particle size of 5 nm and 0.05 wt.% ZnO with particles size of 10-30 nm. The results showed that in comparison between water as absorption medium and the mentioned Nanofluid, an increase in thermal and hence total efficiency of the system was recorded for the latter absorption medium scenario, despite considering concentrations of the Nanoparticles relatively low. A very general trend of dramatic decrease in the positive effect of Nanofluid in consistency with the ambient temperature increase was also observed after fitting the data to segments of straight lines. For 0.05 wt.% mass fraction of Nanoparticles the averaged increment in total efficiency was 4.1%, and in total useable energy (exergy) efficiency was 4.6%.

Keywords: Solar hybrid collector system; Nano fluidic; Photovoltaic

Citation: Younis A, Onsa M, Alhorr Y, Elsarrag E (2018) The Influence of Al2O3-ZnO-H2O Nanofluid on the Thermodynamic Performance of Photovoltaic- Thermal Hybrid Solar Collector System. Innov Ener Res 7: 187. Doi: 10.4172/2576-1463.1000187

Copyright: © 2018 Younis A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Article Usage
  • Total views: 2506
  • [From(publication date): 0-2018 - Dec 03, 2020]
  • Breakdown by view type
  • HTML page views: 2304
  • PDF downloads: 202
Top