alexa Using Digital Elevation Models and Image Processing to Follow Clod Evolution under Rainfall | OMICS International| Abstract

Journal of Ecology and Toxicology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Ecol Toxicol 2018, Vol 2(1): 113

Using Digital Elevation Models and Image Processing to Follow Clod Evolution under Rainfall

Edwige Vannier1*, Odile Taconet1, Richard Dusseaux1 and Frederic Darboux2
1LATMOS/IPSL, University of Versailles St-Quentin in Yvelines, , France
2INRA (French National Institute for Agricultural Research), , UR 0272, France
*Corresponding Author : Edwige Vannier, LATMOS/IPSL, University of Versailles St-Quentin in Yvelines, France, Tel: +33180285095, Email: [email protected]

Received Date: Feb 16, 2018 / Accepted Date: Feb 23, 2018 / Published Date: Mar 07, 2018


Soil surface roughness plays an important role in determining how the soil will interact with its environment. Analysis of soil roughness at small scale matters both for preparation of soil in order to allow for plant emergence, and for decisions to favor soil conservation. Indeed, soil roughness may be shaped by tillage operations and then changes with time, under rainfall impact. Soil surface roughness is usually estimated by various indices, computed on measured profiles or images of elevations. Another approach is focusing on soil cloddiness, either by sieving or by image segmentation. The objective of this study is to monitor the evolution of clods under rainfall with Digital Elevation Model (DEM) recording and image processing.
We prepared two trays of artificial soil surfaces in the laboratory with silt loam soil topped by pre-sieved clods. They were designed to look like a seedbed. Soil surface evolution was achieved by subjecting the trays to controlled artificial rainfalls, and DEM were recorded at each stage. We performed automatic clod segmentation and measurement of the volume of individual clods. Under rainfall impact, we could see smoothing and leveling of clods until disappearance of the smaller ones. We focused on the larger clods greater than 12 mm in diameter that remained till the last rainfall. They showed swelling (volume increase) followed by erosion (volume decrease), these two phenomena being size dependent. Clod volume decrease was modeled by an exponential function. Now, the slope and the amplitude parameters decreased according to a power law, as a function of mean volume of clods.
Monitoring of clod volume with cumulated precipitation with the help of DEM measurements is able to differentiate the dynamics of clod depending on their size. This technique improves the usual roughness description and allows for a better understanding of the processes.

Keywords: Soil surface roughness; Digital elevation model; Monitoring; Cloddiness; Modeling; Rainfall impact; Erosion

Citation: Vannier E, Taconet O, Dusseaux R, Darboux F (2018) Using Digital Elevation Models and Image Processing to Follow Clod Evolution under Rainfall. J Ecol Toxicol 2: 113.

Copyright: © 2018 Vannier E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Recommended Conferences
Article Usage
  • Total views: 1322
  • [From(publication date): 0-2018 - Jul 11, 2020]
  • Breakdown by view type
  • HTML page views: 1242
  • PDF downloads: 80