alexa Quality or Freshness? How to Evaluate Fruits and Vegetables during Postharvest | Open Access Journals
ISSN: 2329-8863
Advances in Crop Science and Technology
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Quality or Freshness? How to Evaluate Fruits and Vegetables during Postharvest

Giacomo Cocetta*
Department of Agricultural and Environmental Sciences, University of Milan, Italy
Corresponding Author : Giacomo Cocetta
Postdoctoral Research Fellow
Department of Agricultural and Environmental Sciences University of Milan
Italy
Tel: +39 3478526802
E-mail: [email protected]
Received June 24, 2014; Accepted June 26, 2014; Published June 28, 2014
Citation: Cocetta G (2014) Quality or Freshness? How to Evaluate Fruits and Vegetables during Postharvest. Adv Crop Sci Tech 2:e115. doi: 10.4172/2329-8863.1000e115
Copyright: © 2014 Cocetta G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Visit for more related articles at Advances in Crop Science and Technology

Editorial
The economic value of plant-derived food depends on its quality and how it is preserved over the whole production chain, until it reaches the final consumer. The concept of quality is wide and covers several aspects such as, external appearance, nutritional value, presence of health-related compounds, safety and security. On the other hand, freshness is strictly connected to the “age” of the product and though it is an attribute related to quality, these two are different concepts and nowadays it is no longer possible to evaluate produce quality only on the basis of its freshness.
At harvest, for the growers the quality is essentially represented by the visual appearance which includes shape, color, and dimensions. During the distribution chain, instead, quality is mainly defined by the technological proprieties of the fruits of vegetables such as firmness and storage ability. Finally, the consumer is first attracted by the appearance of the product but later on he has to be satisfied by the taste and aroma. The visual appearance is very important since it attracts the consumer, while the edible quality and the correct information about nutraceutical and nutritional aspects, will make the consumer to re-purchase the product. Today several retailers consider the term “freshness” as synonymous of quality and use it as a claim to promote their products, thus there is an active debate on how to define quality.
Quality, sometimes, can be hardly quantified since, as said, it is an overall representation of several parameters. Moreover quality can be independent from time since different technological approaches can preserve the quality for long time even for weeks, but the product is not fresh anymore.
Postharvest storage under controlled temperature and atmosphere together with specific treatments are commonly used to control produce decay and assure a significant extension of the product life. Moreover, packaging has a key role in maintaining the product during the postharvest life.
A multidisciplinary approach can be used with the aim to identify potential markers of quality and develop new technologies to be used over the whole product pipeline.
During the postharvest the vegetal tissue is subjected to several kinds of stresses, both biotic and abiotic. The chain of events which are triggered by a stressful condition finally leads to products quality decrement. It is thus fundamental to study the physiological aspects of stress response to find physiological, biochemical and molecular markers to be used as basis in the quality evaluation.
Under optimal grow conditions, the redox state of tissues is kept under control by the action of several antioxidant systems, which are based on the activity of specific enzymes and/or the direct action of specific molecules [1]. When plant tissues, are subjected to a stress (such as mechanical damages, stressful temperatures, diverse light conditions), it is possible to observe an oxidative burst which leads to an accumulation of high levels of oxidant species. As a consequence macromolecules and cellular tissues are damaged by a succession of oxidative chain reactions. The quantification of products derived by the disruption of macromolecules (such as malondialdehyde) can be used as a method of estimation of the oxidative status of the tissue and, as a consequence, as a quality marker, in the case of produce during the postharvest [2].
The changes in the concentration of specific compounds, which are normally involved in maintaining the redox status of cells, is a common and well known feature of stress response. Sugars, proteins, ascorbic acid, phenolic compounds, carotenoids [3-5] as well as the specific activity of enzymes deputized to keep antioxidants level under control are interested by significant changes in response to stress and so, the evaluation and quantification of these compounds is also useful in the estimation of quality. Moreover the mechanisms of stress responses and adaptation to postharvest conditions are modulated by the action of plant hormones [6].
The application of new non-invasive methods for quality evaluation and sorting of agricultural products is growing and several techniques are applied also in the postharvest evaluation of quality. These methods are based on the measurement of physical properties which correlate well with the physiological events which take place during the postharvest [7]. Modeling analyses can be also applied during postharvest with the aim to predict changes in quality parameters of produce [8].
At the transcriptomic level it is possible to observe genes which rapidly change their expression in response to the stress stimuli and in correlation with physiological and biochemical events.
The use of the “omic” systems represents a new approach which is used for interpreting the functional elements of the transcriptome, proteome and metabolome and revealing, for example, the responses to diverse environmental conditions. The use of these innovative techniques has been recently applied in studies aiming to better understand the responses to different postharvest conditions or to study the basis of physiological disorders which can take place during storage [9-12].
Fresh fruits and vegetables have a central role in human diet. In order to develop health promoting crops with high nutritional value and quality traits, a better understanding of the mechanisms and physiological events which affect quality is crucial. The constant development of new techniques represents an important and significant improvement in science and through these approaches is now possible to obtain a wide range of information at multiple levels. New research challenges are now open. All this, creates a great opportunity to study and improve the quality of plant-derived food.
References












Tables and Figures at a glance

image   image   image   image   image   image
Table 1   Table 2   Table 3   Table 4   Table 5   Table 6

Figures at a glance

image   image   image   image   image   image
Figure 1   Figure 2   Figure 3   Figure 4   Figure 5   Figure 6
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 12429
  • [From(publication date):
    August-2014 - Oct 19, 2017]
  • Breakdown by view type
  • HTML page views : 8566
  • PDF downloads :3863
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords