Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

An Understanding of the Biological Activity and Characteristics of Structure-Based Drugs That are Sulfonylpiperazine Derivatives | OMICS International| Abstract

Journal of Cellular and Molecular Pharmacology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Mini Review   
  • J Cell Mol Pharmacol 2023, Vol 7(2): 152
  • DOI: 10.4172/jcmp.1000152

An Understanding of the Biological Activity and Characteristics of Structure-Based Drugs That are Sulfonylpiperazine Derivatives

Eduard Buchner*
Department of Chemistry and Applied Biosciences, Switzerland
*Corresponding Author : Eduard Buchner, Department of Chemistry and Applied Biosciences, Switzerland, Email: eduardbuchner234@gmail.com

Received Date: Mar 26, 2023 / Published Date: Apr 25, 2023

Abstract

Sulfonylpiperazine derivatives have emerged as a promising class of structure-based drugs due to their diverse biological activities and unique characteristics. This study aimed to provide a comprehensive understanding of the biological activity and structural features of sulfonylpiperazine derivatives. First, an overview of the sulfonylpiperazine scaffold was presented, highlighting its synthetic accessibility and versatility in medicinal chemistry. The sulfonyl group, attached to the piperazine ring, imparts crucial physicochemical properties to these derivatives, such as improved metabolic stability and increased lipophilicity, facilitating their interactions with target proteins. The biological activities of sulfonylpiperazine derivatives were explored, focusing on their potential as therapeutic agents in various disease areas. Examples of successful applications include anti-inflammatory, antimicrobial, anticancer, and central nervous system (CNS) disorders. The mechanism of action for each activity was discussed, illustrating the importance of specific structural features in modulating target interactions and subsequent pharmacological effects. Furthermore, the structure-activity relationship (SAR) of sulfonylpiperazine derivatives was examined to elucidate the key determinants of their biological activity. Studies have demonstrated that subtle modifications in the piperazine core, such as substitution patterns, stereochemistry, and ring fusion, can significantly impact potency, selectivity, and pharmacokinetic properties. Insights into SAR can guide the rational design of novel sulfonylpiperazine derivatives with improved efficacy and reduced off-target effects. Finally, an overview of the current strategies employed in the design and synthesis of sulfonylpiperazine derivatives was provided. Structurebased drug design techniques, including molecular docking, virtual screening, and computational modeling, have facilitated the identification of novel lead compounds and optimization of their binding affinity. Additionally, advances in synthetic methodologies have enabled the efficient preparation of diverse sulfonylpiperazine analogs, further expanding the chemical space for drug discovery.

Keywords: Sulfonylpiperazine derivatives; Biological activity; Structure-based drugs; Drug discovery and development

Citation: Buchner E (2023) An Understanding of the Biological Activity and Characteristics of Structure-Based Drugs That are Sulfonylpiperazine Derivatives. J Cell Mol Pharmacol 7: 152. Doi: 10.4172/jcmp.1000152

Copyright: © 2023 Buchner E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top