alexa Analysis of Climate Variability (ENSO) and Vegetation Dynamics in Gojjam, Ethiopia | OMICS International| Abstract
ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
  • Research Article   
  • J Earth Sci Clim Change 2015, Vol 6(10): 320
  • DOI: 10.4172/2157-7617.1000320

Analysis of Climate Variability (ENSO) and Vegetation Dynamics in Gojjam, Ethiopia

Yitea Seneshaw Getahun* and Bethel Geremew Shefine
Department of Natural Resources Management, Debre Berhan University, Ethiopia
*Corresponding Author : Yitea Seneshaw Getahun, Department of Natural Resources Management, Debre Berhan University, Ethiopia, Tel: +251116815440, Email: [email protected]

Received Date: Oct 23, 2015 / Accepted Date: Nov 06, 2015 / Published Date: Nov 16, 2015


This study analyses the regional climate variability, especially La Niña or El Nino Southern Oscillation events and their impact on rainfall variability and vegetation coverage. The temporal and spatial distributions of temperature, precipitation, and vegetation coverage have been investigated for the two agricultural productive seasons from (2000–2008), using data from 11 meteorological station and MODIS satellite data in Gojjam, Ethiopia. The normalized difference vegetation index (NDVI) is widely accepted as a good indicator for providing vegetation properties and associated changes for large spatial scale. The analyses indicated that climate variability is quite common particularly in the small rainy season, Belg and continues to affect the vegetation condition in the region. The statistical correlation analysis indicated that there is a strong positive correlation between NDVI and the seasonal rainfall in most years, whereas, the temperature increase decreases the vegetation coverage in both seasons. The effect of ENSO, climate variability has been high to the regional rainfall variability in mostly of the months or years. In the fully strong El Nino or La Nina episode years like 2000 and 2002 the SST and rainfall showed positive correlation with r2 values 0.75 and 0.63, respectively. The NDVI anomaly pattern is almost similar to that of the main documented precipitation and temperature anomaly pattern associated with ENSO. The spatial and temporal analyses of basic climate elements and NDVI values for the growing season showed that NDVI and rainfall are highly variable during the 9 years period. The ENSO analyses showed an increase in seasonal vegetation coverage during El Nino episodes contrasting to La Niña episodes. However, there has been a rainfall delay during El Niño episodes in the first one or two months of Kiremt season.

Keywords: Climate variability; La Niña or El Niño Southern Oscillation; Normalize different vegetation indices; Remote sensing; Spatial and temporal

Citation: Getahun YS, Shefine BG (2015) Analysis of Climate Variability (ENSO) and Vegetation Dynamics in Gojjam, Ethiopia. J Earth Sci Clim Change. 6: 320. Doi: 10.4172/2157-7617.1000320

Copyright: © 2015 Getahun YS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Article Usage
  • Total views: 10583
  • [From(publication date): 12-2015 - Nov 12, 2019]
  • Breakdown by view type
  • HTML page views: 10019
  • PDF downloads: 564