alexa Cyclin A1 Expression is Reciprocally Controlled by the Transcription Factor<em> ZNF217</em> and miRNAs in Invasive Breast and Prostate Cancer Cells: An <em>In Silico</em> Analysis| Abstract

Journal of Biochemistry and Cell Biology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Biochem Cell Biol 2018, Vol 1(1): 104

Cyclin A1 Expression is Reciprocally Controlled by the Transcription Factor ZNF217 and miRNAs in Invasive Breast and Prostate Cancer Cells: An In Silico Analysis

Tsolkas G1, Komninou D2 and Papanikolaou NA3*
1School of Biomolecular and Biomedical Science, University College Dublin, Republic of Ireland
2Advanced Technological Educational Institute (ATEI) of Thessaloniki, , Macedonia, Greece
3Laboratory of Biological Chemistry, Aristotle University of Thessaloniki School of Medicine, , Macedonia, Greece
*Corresponding Author : Papanikolaou NA, Laboratory of Biological Chemistry, Aristotle University of Thessaloniki School of Medicine, Macedonia, Greece, Tel: (+30)2310999003, Fax: (+30) 2310999004, Email: [email protected]

Received Date: Feb 09, 2018 / Accepted Date: Feb 26, 2018 / Published Date: Mar 05, 2018

Abstract

Cyclins and their partner cyclin-dependent kinases (CDKs) play crucial roles in proliferation, initiation of DΝΑ replication, and mitosis. Human cyclin Α1 is expressed at its highest levels in spermatocytes and is re-expressed in leukemic cell lines, in cells from acute myeloid leukemia (ΑΜL) and acute promyelocytic leukemia (ΑΡL), as well as in metastatic breast cancer, hepatocarcinomas and prostate cancer. Transgenic mice engineered to express cyclin Α1 in myeloid precursor cells develop ΑΜL with low penetrance and long latency. In this work we have mined and analyzed data from the Gene Expression Omnibus (GEO) that potentially reveal novel cyclin A1 mechanisms of action in metastatic breast and prostate tumors. The data suggest that in breast and prostate tumors, cyclin A1 expression is repressed by two miRNAs and activated by the transcription factor ZNF217, and that cyclin A1 is overexpressed in invasive prostate cancer but not in pre-invasive carcinoma. Down-regulation of the miRNAs and overexpression of ZNF217 correlate with epithelial-to-mesenchymal transition (EMT), suggesting that EMT may be partly mediated by ZNF217-mediated re-expression of cyclin A1. Collectively, these data argue that re-expression of cyclin A1 protein may contribute to the mesenchymal-to-epithelial transition in the aforementioned tumor types. Since cyclin A1 protein is not expressed in normal adult tissues, except germ cells, it may be a promising target for intervention. We discuss implications of these findings in further dissecting the role of cyclin A1 protein in cancer development and for its targeting.

Keywords: Spermatocytes; Cyclin A1 protein; Breast cancer; Prostate cancer; Acute myeloid leukemia; Acute promyelocytic leukemia

Citation: Tsolkas G, Komninou D, Papanikolaou NA (2018) Cyclin A1 Expression is Reciprocally Controlled by the Transcription Factor ZNF217 and miRNAs in Invasive Breast and Prostate Cancer Cells: An In Silico Analysis. J Biochem Cell Biol 1: 104.

Copyright: 2018 Tsolkas G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Article Usage
  • Total views: 1139
  • [From(publication date): 0-2018 - Dec 11, 2019]
  • Breakdown by view type
  • HTML page views: 1073
  • PDF downloads: 66
Top