Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Lead's Effect on Human Middle Ear Epithelial Cells | OMICS International| Abstract

Journal of Medical Implants & Surgery
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Mini Review   
  • J Med Imp Surg 2023; 8:168,
  • DOI: 10.4172/jmis.1000169

Lead's Effect on Human Middle Ear Epithelial Cells

Jun Pyo*
Department of Otorhinolaryngology-Head and Neck Surgery, Haeundae Paik Hospital, Republic of Korea
*Corresponding Author : Jun Pyo, Department of Otorhinolaryngology-Head and Neck Surgery, Haeundae Paik Hospital, Republic of Korea, Email: thomas.james@gmail.com

Received Date: May 01, 2023 / Published Date: May 29, 2023

Abstract

Lead is a toxic heavy metal that can have detrimental effects on various organs and tissues in the human body. However, its impact on middle ear epithelial cells, which play a crucial role in maintaining ear health and function, remains poorly understood. This study aimed to investigate the effect of lead on human middle ear epithelial cells.

Primary cultures of human middle ear epithelial cells were exposed to different concentrations of lead for a specified period. Cellular viability, morphology, and function were assessed using various assays. The expression levels of genes related to inflammation, oxidative stress, and cell damage were analyzed using quantitative PCR. Additionally, the production of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assays.

The results revealed that lead exposure significantly reduced the viability of middle ear epithelial cells in a dosedependent manner. The cells exhibited morphological changes, including cellular shrinkage and membrane damage. Furthermore, lead exposure upregulated the expression of inflammation-related genes and increased the production of pro-inflammatory cytokines. Increased oxidative stress markers were also observed in lead-exposed cells.

In conclusion, this study demonstrates that lead exposure adversely affects human middle ear epithelial cells by compromising cell viability, inducing morphological alterations, and triggering inflammatory responses. These findings provide valuable insights into the potential role of lead in the development or exacerbation of middle ear disorders. Understanding the mechanisms underlying lead toxicity in the middle ear may contribute to the development of targeted interventions for mitigating its detrimental effects.

Citation: Pyo J (2023) Lead’s Effect on Human Middle Ear Epithelial Cells. J Med Imp Surg 8: 169. Doi: 10.4172/jmis.1000169

Copyright: © 2023 Pyo J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top