alexa

GET THE APP

Zearalenone Induced Cytotoxicity and Oxidative Stress in Human Peripheral Blood Leukocytes | OMICS International| Abstract
ISSN: 2476-2067

Toxicology: Open Access
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Toxicol Open Access 2015, Vol 1(1): 102
  • DOI: 10.4172/2476-2067.1000102

Zearalenone Induced Cytotoxicity and Oxidative Stress in Human Peripheral Blood Leukocytes

Martha Josefina Viera-Limón1, Jesús Antonio Morlett-Chávez2, Crystel Aleyvick Sierra-Rivera3, Diana Luque-Contreras2 and Alejandro Zugasti-Cruz1,3*
1Food Research Department, Faculty of Chemistry, Autonomous University of Coahuila, , Mexico
2Molecular Diagnosis and Clinical Analyses Laboratory, Faculty of Chemistry, Autonomous University of Coahuila, , Mexico
3Laboratory of Immunology, Faculty of Chemistry, Autonomous University of Coahuila, , Saltillo, Coahuila, Mexico
*Corresponding Author : Alejandro Zugasti-Cruz, Laboratory of Immunology, Faculty of Chemistry, Autonomous University of Coahuila, Venustiano Carranza Blvd. And Jose Cardenas Valdes Street, Saltillo, Coahuila, Mexico, Tel: +52 01 (844) 4390511, Email: [email protected]

Received Date: Sep 10, 2015 / Accepted Date: Oct 02, 2015 / Published Date: Oct 06, 2015

Abstract

Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by a variety of Fusarium fungi that are commonly found in feed. ZEA cause reproductive disorders of farm animals and occasionally hyperoestrogenic syndromes of humans; also, has been shown to be hepatotoxic, genotoxic, hematotoxic and immunotoxic, evidence primarily based on studies with different biological models in vitro and in vivo in poultry and laboratory rodents. However, there is little knowledge about of the effects of ZEA in human leukocytes.

Objective: The aim of this study was to investigate the cell viability and lipid peroxidation effects caused by ZEA in human peripheral blood leukocytes.

Methods: Human leukocytes were exposed in vitro with ZEA in concentrations ranging from 10 to 80 μg/mL during 1 h of incubation. Cell viability was measured by staining with trypan blue and neutral red assays, and lipid peroxidation was evaluated by the amount of the lipid peroxidation product, malondialdehyde (MDA).

Results: ZEA significantly decreased the cell viability in human leukocytes with concentrations ranging from 10 μg/mL to 80 μg/mL. Also, we found significant increases of MDA levels in the cells exposed to concentrations between 40 and 80 μg/mL.

Conclusion: The data suggest that lipid peroxidation is involved in the citotoxicity of ZEA in human leukocytes.

Keywords: Zearalenone; Fusarium; Mycotoxin; Human leukocytes; Cell viability; Lipid peroxidation; Malondialdehyde

Citation: Viera-Limón MJ, Morlett-Chávez JA, Sierra-Rivera CA, Luque-Contreras D, Zugasti-Cruz A (2015) Zearalenone Induced Cytotoxicity and Oxidative Stress in Human Peripheral Blood Leukocytesevita. Toxicol Open Access 1: 102. Doi: 10.4172/2476-2067.1000102

Copyright: © 2015 Viera-Limón MJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top