alexa Abstract | Effects of Putrescine on Anti-Oxidative Enzymes in Two Rice Cultivars Subjected To Salinity
ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


A study was conducted for elucidation of expression of isozymic profiles with respect to salinity along with putrescine application in two rice varieties cv. Nonabokra and cv. Swarna at 200mM NaCl alone and with 2mM putrescine. Preliminarily these two varieties displays differential pattern of accumulation of Na+ as revealed from SEM micrograph studies. There recorded significant variation in activities in-vitro as well as by in-gel studies of Guaiacol Peroxidase (GPX), Ascorbate Peroxidase (APX), Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Reductase (GR) enzymes. Activities for GPX, APX and SOD followed significant up regulation under salinity. In contrary CAT and GR enzymes were subdued in both varieties. Putrescine improved the activity for SOD, GPX and APX. CAT and GR maintained stable activity with putrescine. A number of isozymic bands were found with the induction of salinity and putrescine treatment. For SOD three distinct bands were recorded as Cu/Zn/Mn-Fe SOD. For GPX and APX multiple bands were revealed in activity gel. On the contrary CAT was insensitive with the putrescine induction and hardly there recorded any variation. GR isozyme was more prominent in band intensities both in salinity and putrescine. Conclusively different isozymic profiles have contributed to resist salinity along with putrescine.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Nirmalya Ghosh and Malay Kumar Adak


Anti-oxidative enzymes, Polyamine, Rice, Salinity, SEM, Irrigation Technology, Crop Productivity, Seed Production

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version