Research Article
A Comparative White Matter Study with Parkinsons disease,Parkinsons Disease with Dementia and Alzheimers Disease
Rodrigo D Perea1,2,4, Rebecca C Rada2, Jessica Wilson3, Eric D Vidoni12, Jill K Morris1,2, Kelly E Lyons1, Rajesh Pahwa1, Jeffrey M Burns1,2 and Robyn A Honea1,2,4
1Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
2Alzheimer’s Research Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA
3Department of Psychology, University of Kansas, Lawrence, KS, USA
4Bioengineering Program, Department of Engineering, University of Kansas, Lawrence, KS, USA
- Corresponding Author:
- Robyn A Honea
Department of Neurology
University of Kansas School of Medicine
4350 Shawnee Mission Parkway
Fairway, KS 66205, U.S.A
Tel: 913-945-5038
Fax: 913-945-5035
E-mail: rhonea@kumc.edu
Received date: July 31, 2013; Accepted date: August 19, 2013; Published date: August 26, 2013
Citation: Perea RD, Rada RC, Wilson J, Vidoni ED, Morris JK, et al. (2013) A Comparative White Matter Study with Parkinson’s disease, Parkinson’s Disease with Dementia and Alzheimer’s Disease. J Alzheimers Dis Parkinsonism 3:123. doi: 10.4172/2161-0460.1000123
Copyright: © 2013 Perea RD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are among the most common neurodegenerative disorders affecting older populations. AD is characterized by impaired memory and cognitive decline while the primary symptoms of PD include resting tremor, bradykinesia and rigidity. In PD, mild cognitive changes are frequently present, which could progress to dementia (PD dementia (PDD)). PDD and AD dementias are different in pathology although the difference in microstructural changes remains unknown. To further understand these diseases, it is essential to understand the distinct mechanism of their microstructural changes. We used diffusion tensor imaging (DTI) to investigate white matter tract differences between early stage individuals with AD (n=13), PD (n=12), PDD (n=9), and healthy non-demented controls (CON) (n=13). We used whole brain tract based spatial statistics (TBSS) and a region of interest (ROI) analysis focused on the substantia nigra (SN). We found that individuals with PDD had more widespread white matter degeneration compared to PD, AD, and CON. Individuals with AD had few regional abnormalities in the anterior and posterior projections of the corpus callosum while PD and CON did not appear to have significant white matter degeneration when compared to other groups. ROI analyses showed that PDD had the highest diffusivity in the SN and were significantly different from CON. There were no significant ROI differences between CON, PD, or AD. In conclusion, global white matter microstructural deterioration is evident in individuals with PDD, and DTI may provide a means with which to tease out pathological differences between AD and PD dementias.