Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar


A New Biological Pretreatment Method for Enhancing Cellulase Performance | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


A New Biological Pretreatment Method for Enhancing Cellulase Performance

Young-Cheol Chang* and Shintaro Kikuchi
Division of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, Muroran, Japan
Corresponding Author : Young-Cheol Chang
Division of Applied Sciences
College of Environmental Technology
Muroran Institute of Technology, Muroran, Japan
Tel: +81-143-46-5757
Fax: +81-143-46-5757
Received February 21, 2014; Accepted February 22, 2014; Published February 27, 2014
Citation: Chang YC, Kikuchi S (2014) A New Biological Pretreatment Method for Enhancing Cellulase Performance. J Bioremed Biodeg 5:e142. doi:10.4172/2155-6199.1000e142
Copyright: © 2014 Chang YC, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Introduction: Only a few bacteria capable of degrading lignin have been reported. Of these bacteria, Bacillus sp. is very useful because this soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt for long periods of time. This manuscript suggests an effective biological pretreatment method for enhancing cellulase performance.

Materials and methods: An alkali lignin-degrading bacterium was isolated from forest soils and named CS-1. 16S rDNA sequence analysis indicated that CS-1 from Hokkaido from Okinawa was Bacillus sp. (100% identity with HQ727971.1).

Results: Strains CS-1 displayed alkali lignin degradation capability. With initial concentrations of 0.05–2.0 g l-1, at least 61% alkali lignin could be degraded within 48 h. The maximum lignin-degrading rate of CS-1 was estimated to be 99.5% at a concentration of 0.05 g l-1. High laccase activities were observed in crude enzyme extracts from the isolated strain. Very low (negligible) lignin peroxidase and low manganese peroxidase activities were observed. This result indicated that alkali lignin degradation was correlated with laccase activities.

Discussion: Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure [pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria (Lactobacillus bulgaricus(NBRC13953) and Streptococcus thermophiles (NBRC13957)] at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance.


Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
Share This Page