A Rapid ELISA Method to Improve the Automated Test Throughput | OMICS International | Abstract
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Rapid ELISA Method to Improve the Automated Test Throughput

Daniele Casini1*, Paola Fontani1, Paolo Ruggiero1, Enrico Balducci2 and Duccio Berti1

1GSK Vaccines S.r.l., Research Center, Siena, Italy

2School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy

*Corresponding Author:
Daniele Casini
GSK Vaccines S.r.l., Research Center
via Fiorentina 1, 53100 Siena, Italy
Tel: +39 0577 24 3227
Fax: +39 0577 278600
E-mail: [email protected]

Received date: October 07, 2015; Accepted date: November 09, 2015; Published date: November 16, 2015

Citation: Casini D, Fontani P, Ruggiero P, Balducci E, Berti D (2015) A Rapid ELISA Method to Improve the Automated Test Throughput. J Anal Bioanal Tech S13:005. doi:10.4172/2155-9872.S13-005

Copyright: © 2015 Casini D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


In ELISA, ligand is commonly adsorbed to the plastic surface through non-covalent bonds between the hydrophobic regions of the ligand and the plastic surface. Thus, all the reactions occur in a heterogeneous phase, with some reactants in solution, and some immobilized. As a result, the diffusion constant of immobilized reagents is zero and the overall reaction speed is low. With the proposed new approach the first step occurs in a homogeneous phase, aimed at speeding up ELISA procedure especially to easily adapt it to robotic systems. Conventional tests usually may take up to 5 hours. Our “rapid ELISA” approach considerably reduces this time to less than 30 minutes allowing the method to be more suitable for automation. The rapid ELISA has been set up to analyze samples coming from animal studies for vaccine development purposes. In particular, it was applied to quantitate antibodies specific for the Outer Membrane Vesicle of Neisseria meningitidis group B and Influenza virus antigens (H1N1; H3N2; B). Due to its high flexibility, this rapid ELISA can be used to detect a wide range of antibodies raised against a wide range of antigens.