alexa

GET THE APP

Adsorption of Acid Dyes onto Bentonite and Surfactant-modified Bentonite | OMICS International | Abstract
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Adsorption of Acid Dyes onto Bentonite and Surfactant-modified Bentonite

Akl MA*, Youssef AM and Al-Awadhi MM

Department of Chemistry, Faculty of Science, Mansoura University, Egypt

*Corresponding Author:
Akl MA
Department of Chemistry, Faculty of Science
Mansoura University, P.O. Box 70
Mansoura, Egypt
Tel: +20-5022-42388
Fax: +20-5022-46781
E-mail: [email protected]

Received date: September 23, 2013; Accepted date: October 23, 2013; Published date: October 25, 2013

Citation: Akl MA, Youssef AM, Al-Awadhi MM (2013) Adsorption of Acid Dyes onto Bentonite and Surfactant-modified Bentonite. J Anal Bioanal Tech 4:174. doi: 10.4172/2155-9872.1000174

Copyright: © 2013 Akl MA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Adsorption of Congo red (CR) from water via batch adsorption experiments onto bentonite and CTAB-modified bentonite (CTAB-MBn) was investigated. Studies concerning the factors influencing the adsorption capacities of bentonite and CTAB-MBn, such as initial dye concentration, adsorbent dosage, pH, ionic strength, contact time and temperature were systematically investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while bentonite exhibited sorption capacities lower than CTAB-MBn. The kinetics data were analyzed using first order and pseudo-second order models. It was best described by the pseudo-second order model. The isotherm data were investigated according to Langmuir and Freundlich equations. Thermodynamic parameters ΔG°, ΔH° and ΔS° were calculated for the adsorption of CR on bentonite and CTAB-MBn ; the value of ΔG° showed the spontaneous nature of adsorption for both sorbents.

Keywords

Top