alexa

GET THE APP

An Introgression of Solanum habrochaites in the Rootstock Improves Stomatal Regulation and Leaf Area Development of Grafted Tomatoes under Drought and Low Root-Zone-Temperatures| Abstract
ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Adv Crop Sci Tech 2015, Vol 3(3): 175
  • DOI: 10.4172/2329-8863.1000175

An Introgression of Solanum habrochaites in the Rootstock Improves Stomatal Regulation and Leaf Area Development of Grafted Tomatoes under Drought and Low Root-Zone-Temperatures

Damodar Poudyala1*, Laxman Khatria1 and Ralf Uptmoora1,2
1Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenh?user Strasse 2, D-30419 Hannover, Germany
2University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
*Corresponding Author : Damodar Poudyala, Research-for-Development, Department Sean Seed Service, Centre Limited 3874, Kathmandu, Nepal, Tel: +977 1 4310245; +977 9841425503, Email: [email protected]

Received Date: Apr 02, 2015 / Accepted Date: Jun 25, 2015 / Published Date: Jul 20, 2015

Abstract

Drought and low root zone temperature (RZT) hamper plant growth and leaf area development. Introgression lines (ILs) developed from a Solanum lycopersicum × Solanum habrochaites cross with the exotic parental line as donor were shown to significantly improve cold tolerance. The goal of the present study was to study agronomical and Physiological traits improving drought and, since adaptation to cold and drought is to some extent regulated by the same genetic mechanisms, low root zone tolerance in tomatoes. The parental lines of an IL library and ILs carrying quantitative trait loci (QTL) alleles for cold tolerance introgressed from S. habrochaites were used as plant material. The recurrent parent (RP) was grafted onto the IL (IL/RP) and self-grafted (RP/RP). Grafted plants were grown under two different RZTs (10°C and 20-26°C) and two soil moisture regimes (well-watered\ and drought stress). Agronomical and physiological parameters as green, non-green, and total leaf area, dry matter of plant parts, root to shoot ratio, osmotic adjustment, stomatal conductance, and stress tolerance index were measured and calculated. Plants grafted onto ILs produced higher total biomass and leaf area and probably regulated stomatal opening and closure more efficiently. The stm9 introgression from S. habrochaites LA1777 renders the scion more tolerant for low root-zone temperature and drought stress by a better stomatal regulation. Results confirm that an introgression of favourable genes from S. Habrochaites can improve cold and drought tolerance in grafted tomatoes and shoot turgor maintenance under root chilling is primarily a root-based trait.

Keywords: Drought and low root zone temperature stress; Introgression lines; Stomatal conductance; Stress recovery; Tomato; QTLs

Citation: Poudyala D, Khatria L, Uptmoora R (2015) An Introgression of Solanum habrochaites in the Rootstock Improves Stomatal Regulation and Leaf Area Development of Grafted Tomatoes under Drought and Low Root-Zone- Temperatures. Adv Crop Sci Tech 3:175. Doi: 10.4172/2329-8863.1000175

Copyright: © 2015 Poudyala D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Recommended Conferences

World Conference on Agro-Ecology and Crop Science

Manila, Philippines
Article Usage
  • Total views: 12192
  • [From(publication date): 8-2015 - Sep 24, 2021]
  • Breakdown by view type
  • HTML page views: 11815
  • PDF downloads: 377
Top