Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar


Analyses using Cell Wall Glycan-directed Monoclonal Antibodies Reveal Xylan-degradation by Two Microbial Glycosyl Hydrolases in Cell Walls from Poplar and Switchgrass Biomass | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Analyses using Cell Wall Glycan-directed Monoclonal Antibodies Reveal Xylan-degradation by Two Microbial Glycosyl Hydrolases in Cell Walls from Poplar and Switchgrass Biomass

Supriya Ratnaparkhe1, Sivasankari Venkatachalam2, Michael G Hahn3 and Sivakumar Pattathil3*
1DBT-ICT-Centre for Energy Biosciences, Nathalal Parekh Marg, Matunga, Mumbai, India
2Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA 30602, USA
3Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
Corresponding Author : Sivakumar Pattathil
Complex Carbohydrate Research Center
University of Georgia, Athens, GA 30602, USA
Tel: 706-542-4451
Fax: 706-542-4412
Received: June 05, 2013; Accepted: September 06, 2013; Published: September 12, 2013
Citation: Ratnaparkhe S, Venkatachalam S, Hahn MG, Pattathil S (2013) Analyses using Cell Wall Glycan-directed Monoclonal Antibodies Reveal Xylan-degradation by Two Microbial Glycosyl Hydrolases in Cell Walls from Poplar and Switchgrass Biomass. J Bioremed Biodeg S4:004. doi:10.4172/2155-6199.S4-004
Copyright: © 2013 Ratnaparkhe S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Plant biomass represents the major source for renewable bio-fuels. Cell walls constitute the major portion of plant biomass. The main challenge in sustainable production of ligno-cellulosic biofuel is overcoming the cell wall recalcitrance barrier. A number of cell wall components including lignin and hemicelluloses have been shown to contribute to this cell wall recalcitrance. Thus, removing or reducing the proportion of wall components that contribute to cell wall recalcitrance of ligno-cellulosic biomass is a key step in sustainable ligno-cellulosic biofuel production. We have demonstrated the use of a comprehensive array of cell wall glycan-directed monoclonal antibodies to study the hydrolytic activities of two xylan-degrading microbial glycosyl hydrolases, CjXyl10B (a representative member of the GH10 family) and NpXyl11A (a representative member of the GH11 family) on cell wall extracts and cell walls from poplar and switchgrass biomass. Depletion of xylan epitopes, as monitored by the antibodies, in base extracts generated from raw poplar and switchgrass biomass that are treated with CjXyl10B or NpXyl11A confirmed the xylanase activity of these hydrolases, and demonstrates the utility of the antibody-based approach for screening for enzymes active on native biomass. Base extracts isolated from raw biomass treated with these enzymes prior to extraction also exhibited reduced xylan content. Further, prior removal of lignin significantly increased the efficiency of the xylan degradation in raw poplar and switchgrass biomass by the CjXyl10B and NpXyl11A enzymes. These results, thus hint that these two xylanases could potentially be used, in combination with lignin reduction, as efficient xylan-removing agents, while processing poplar and switchgrass feed stocks for biofuel production.


Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
Share This Page