alexa Assessing the Impact of Misclassification when Comparing Prevalence Data: A Novel Sensitivity Analysis Approach | OMICS International | Abstract
ISSN: 2161-1165

Epidemiology: Open Access
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Assessing the Impact of Misclassification when Comparing Prevalence Data: A Novel Sensitivity Analysis Approach

Ninet Sinaii1,2*, Sean D Cleary3 and Pamela Stratton2

1Biostatistics and Clinical Epidemiology Service, CC, NIH, Bethesda, MD, USA

2Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA

3Department of Epidemiology and Biostatistics, School of Public Health and Health Services, The George Washington University, Washington, DC, USA

*Corresponding Author:
Ninet Sinaii
Biostatistics and Clinical Epidemiology Service
CC, NIH, Bethesda, MD, USA
Tel: 301-402-9364
Fax: 301-496-0457
E-mail: [email protected]

Received date: January 11, 2014; Accepted date: April 25, 2014; Published date: April 30, 2014

Citation: Sinaii N, Cleary SD, Stratton P (2014) Assessing the Impact of Misclassification when Comparing Prevalence Data: A Novel Sensitivity Analysis Approach . Epidemiol 4:155. doi: 10.4172/2161-1165.1000155

Copyright: © 2014 Sinaii N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


A simple sensitivity analysis technique was developed to assess the impact of misclassification and verify observed prevalence differences between distinct populations.

The prevalence of self-reported comorbid diseases in 4,331 women with surgically-diagnosed endometriosis was compared to published clinical and population-based prevalence estimates. Disease prevalence misclassification was assessed by assuming over-reporting in the study sample and under-reporting in the general (comparison) population. Over- and under-reporting by 10%, 25%, 50%, 75%, and 90% was used to create a 5×5 table for each disease. The new prevalences represented by each table cell were compared by p-values, prevalence odds ratios, and 95% confidence intervals.

Three misclassification patterns were observed: 1) differences remained significant except at high degrees (>50%) of misclassification; 2) minimal (10%) misclassification negated any observed difference; and 3) with some (25-50%) misclassification, the difference disappeared, and the direction of significance changed at higher levels (>50%).

This sensitivity analysis enabled us to verify observed prevalence differences. This useful, simple approach is for comparing prevalence estimates between distinct populations.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

bornova escort

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version